
International Journal of Electrical and Electronics Research   ISSN 2348-6988 (online) 
Vol. 12, Issue 4, pp: (1-5), Month:  October - December 2024, Available at: www.researchpublish.com 

 

Page | 1 
Research Publish Journals 

 

Fractional Fourier Series Expansions of Two 

Types of Fractional Trigonometric Functions 

Chii-Huei Yu 

School of Mathematics and Statistics, Zhaoqing University, Guangdong, China 

DOI: https://doi.org/10.5281/zenodo.13955269 

Published Date: 19-October-2024 

Abstract: In this paper, we obtain the fractional Fourier series expansions of two types of fractional trigonometric 

functions. A new multiplication of fractional analytic functions plays an important role in this article. In fact, our 

results are generalizations of ordinary calculus results. 

Keywords: fractional Fourier series expansions, fractional trigonometric functions, new multiplication, fractional 

analytic functions. 

I.   INTRODUCTION 

Fractional calculus is a mathematical analysis tool used to study arbitrary order derivatives and integrals. It unifies and 

extends the concepts of integer order derivatives and integrals [1-5]. Generally, many scientists do not know these 

fractional integrals and derivatives, and they have not been used in pure mathematical context until recent years. 

However, in the past few decades, the fractional integrals and derivatives have frequently appeared in many scientific 

fields such as fluid mechanics, viscoelasticity, physics, image processing, economics and engineering [6-13]. 

The definition of fractional derivative is not unique. The commonly used definitions include Riemann-Liouville (R-L) 

fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie’s 

modified R-L fractional derivative [14-19]. Since Jumarie type of R-L fractional derivative helps to avoid non-zero 

fractional derivative of constant function, it is easier to use this definition to connect fractional calculus with ordinary 

calculus. 

In this paper, we obtain the fractional Fourier series expansions of the following two types of fractional trigonometric 

functions:  

                                                                                               , 

and 

                                                                                               , 

where              and     are positive integers. A new multiplication of fractional analytic functions plays an 

important role in this paper. In fact, our results are generalizations of classical calculus results. 

II.   PRELIMINARIES 

At first, the definition of fractional analytic function is introduced. 

Definition 2.1 ([20]): If     , and    are real numbers for all  ,         , and      . If the function            

can be expressed as an  -fractional power series, i.e.,         
  

       
      

   
    on some open interval 

containing   , then we say that        is  -fractional analytic at    . Furthermore, if            is continuous on 

closed interval       and it is  -fractional analytic at every point in open interval      , then    is called an  -fractional 

analytic function on      . 
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Next, we introduce a new multiplication of fractional analytic functions. 

Definition 2.2 ([21]): Let      , and    be a real number. If        and         are two  -fractional analytic 

functions defined on an interval containing     , 

                                                                                           
  

       
      

   
   ,                                                     (1) 

                                                                                          
  

       
      

   
    .                                                    (2) 

Then we define 

                                                                                         

                                                                     
  

       
      

   
      

  

       
      

   
     

                                                                     
 

       
   

 
 

       
 
     

         
                                              (3) 

Equivalently, 
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Definition 2.3 ([22]): If        and       ,         are two  -fractional analytic functions defined on an interval 

containing    , 

                                                     
  

       
      

    
  

  
 

 

      
      

  
   

 
   

 
    ,                            (5) 

                                                    
  

       
      

    
  

  
 

 

      
      

  
   

  
   

 
                                (6) 

The compositions of        and        are defined by 

                                                                                
  

  
        

    
   ,                                           (7) 

and 

                                                                                
  

  
        

    
   .                                            (8) 

Definition 2.4 ([23]): Let      , and       ,        be two  -fractional analytic functions. Then         
   

 

                  is called the  th power of       . On the other hand, if                 , then        is 

called the    reciprocal of       , and is denoted by         
      

. 

Definition 2.5 ([24]): If      , and   is a real variable. The  -fractional exponential function is defined by 

                                                                        
   

       
  

 

  
 

 

      
   

   

  
   

 
                                             (9) 

On the other hand, the  -fractional cosine and sine function are defined as follows: 
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and 

                                                             
             

            
  

     

       
 

 

      
   

        
 
   

 
    .                          (11) 
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Definition 2.6: If the complex number       , where     are real numbers, and      .  , the real part of  , is 

denoted by      ;    the imaginary part of  , is denoted by      . 

Proposition 2.7 (fractional Euler’s formula): Let      , then 

                                                                                                           .                                                      (12) 

Proposition 2.8 (fractional DeMoivre’s formula):  Let      , and    be a positive integer, then 

                                                                                                    .                                       (13) 

III.   MAIN RESULTS 

In this section, we find the fractional Fourier series expansions of two types of fractional trigonometric functions. At first, 

we need a lemma. 

Lemma 3.1: If      are positive integers,   is a complex number and      . Then 

                                                                                       
  

                 
                                                                   (14)  

Proof:  Since            , it follows that 

                                        
  

     

                                                   
      

                                                
    .                                                                                                  q.e.d.  

 Theorem 3.2: Let               and      be positive integers, then 

                                                            

                                                           
    .                                                                                      (15) 

And 

                                                                                               

                                                          
    .                                                                                       (16) 

  Proof   Let           , then by Lemma 3.1 

                                                     
      

                          
   .                              (17) 

Using fractional DeMoivre’s formula yields 

                                                                    
   .                           (18) 

By fractional Euler’s formula, we have 

                                                                                       
      

  

                                                                           
   .                                                (19) 

Therefore,  

                                                                                          
      

  

                                                                                
    .                                     (20) 

And hence, 
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    . 

Similarly, since 

                                                                                          
      

  

                                                                              
    .                                    (21) 

Thus, 

                                                                                   

                                             
    .                                                                          q.e.d. 

IV.   CONCLUSION 

In this paper, we find the fractional Fourier series expansions of two types of fractional trigonometric functions. A new 

multiplication of fractional analytic functions plays an important role in this article. In fact, our results are generalizations 

of traditional calculus results. In the future, we will continue to study the problems in engineering mathematics and 

fractional differential equations. 
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